

2 May 2025

Ref: 212218/10810

Muswellbrook Coal Company PO Box 123 Muswellbrook NSW 2333

RE: APRIL 2025 NOISE MONITORING RESULTS - MUSWELLBROOK COAL

This letter report presents the results of noise compliance monitoring, commencing at about 12:20 am on Wednesday 9th of April, 2025, for the Muswellbrook Coal Company (MCC) operation at Muscle Creek Road, Muswellbrook. The monitoring was undertaken as per the requirements of D.A. 205/2002 and detailed in the Noise Management Plan (NMP) for the site.

Attended Noise Monitoring Program

Noise monitoring was undertaken in accordance with the NMP as summarised below.

All attended monitoring and equipment maintenance and calibration is conducted in accordance with the Noise Policy for Industry (NPfI) and AS1055 – Acoustics, Description and Measurement of Environmental Noise.

Attended noise monitoring is undertaken monthly by an independent noise consultant. Each attended noise survey will be conducted during night periods only. If it is identified during the noise monitoring that the mining noise from the operation is exceeding the criteria, MCC will be notified and the operations will be modified as required. Monitoring at the location(s) where the noise levels are elevated will be undertaken again with a minimum break of 75 minutes between monitoring.

The noise criteria for MCC apply under all meteorological conditions except for the following:

- i. Wind speeds greater than 3m/s at 10m above ground level; or
- ii. Stability category F temperature inversion conditions and wind speeds greater than 2 m/s at 10m above ground level; or
- iii. Stability category G temperature inversion conditions.

To determine compliance with the Leq (15 min) operational noise criteria the modification factors detailed in Section 4 of the NPI must be applied, as appropriate, to the measured noise levels.

Due to the distance of the operation from each residence, the monitoring of LA1 (1minute) at the facade is not considered necessary and will be conducted at/or near the property boundary.

The attended noise monitoring locations are detailed in Table 1 and shown in Figure 1.

ı	Table 1 Noise Monitoring Locations
Location	Description
R13	Sandy Creek Road
R15	Queen St
R17	Queen St
R25	Sandy Creek Road
R32	Muscle Creek Road

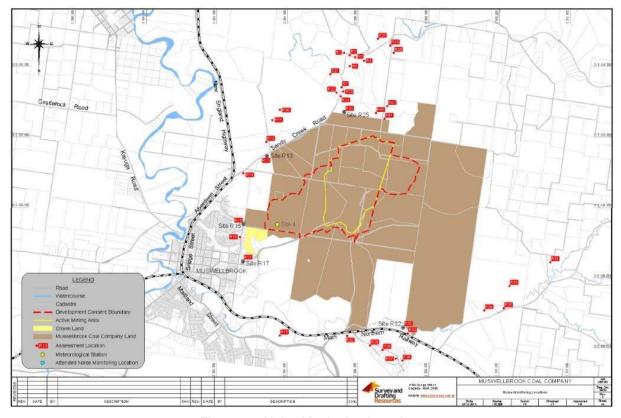


Figure 1 – Noise Monitoring Locations

Noise criteria for all assessment locations shown in Figure 1 are detailed in Appendix I to this report.

Monitoring Equipment

Attended noise monitoring was conducted with a Brüel & Kjær Type 2250 Precision Sound Analyser. This instrument has Type 1 characteristics as defined in AS1259-1990 "Sound Level Meters" and has current NATA calibration. Field calibration is carried out at the start and end of each monitoring period. Calibration certificates are attached as **Appendix II** to this report.

A-weighted noise levels were measured over the 15 minute monitoring period with data acquired of 1 second statistical intervals and the meter set to "fast" response. Each 1 second measurement is accompanied by a third-octave band spectrum from 20 - 20k Hz which is required for analysing NPI 'modifying factors'.

Doc. No: 212218-10810

Time based field notes allow for determination of the relative contributions to the overall noise level of all significant noise sources.

Measurement Analysis

The MCC compliance noise criteria are based on a 15 minute Leq noise level. The 15 minute Leq noise level for each monitoring period is shown in the tables below. Where the noise from MCC was audible Bruel & Kjaer "Evaluator" analysis software was used to quantify the contribution of the operation and other significant noise sources to the overall level. Operational noise from MCC is shown in the table in bold type.

All noise levels shown are in dB(A) Leq (15 min) unless otherwise detailed.

MCC Operations

Operational details for MCC for the monitoring period on the 9th of April 2025 (that is, after midnight on the 8th of April) are detailed in **Appendix III**. At the time of the noise monitoring MCC had ceased mining operations and work was being undertaken to rehabilitate the site.

Noise Compliance Assessment

The results of the noise measurements are shown in Table 2.

					Table	2			
			MCC Op	erational No	oise Monito	ring Results	– 9 th April 20	25	
Location	Time	dB(A), Leq	MCC Contribution dB(A), Leq	Criterion dB(A) Leq	dB(A), L1 (1min) ¹	Criterion dB(A), L1 (1min) ¹	Stability Class/ Wind speed (m/s)/dir ^o	Compliant Met Conditions?	Identified Noise Sources ²
R13 Sandy Creek Rd.	12:40am	49	37 ³ 41 adjusted	41	40³ 44 adjusted	45	F/1.6/153	Yes	Traffic (48), train (38), MCC (37)
R15 Queen St.	1:04am	36	35	37	40	45	F/1.4/093	Yes	MCC (35), train (27), insects (24), traffic (24)
R17 Queen St.	1:23am	37	34	35	39	45	F/0.3/213	Yes	MCC (34), traffic (33), frogs (25), insects (23)
R25 Sandy Creek Rd.	12:20am	59	35	42	42	45	F/1.2/136	Yes	Traffic (59), MCC (35) , birds (20), insects (20)
R32 Muscle Creek Rd.	1:52am	70	n/a	35	n/a	45	F/0.5/013	Yes	Trains (70), frogs (28), MCC inaudible

- 1. L1 (1 min) from MCC operational noise only
- 2. See text regarding MCC noise sources
- 3. See Table 4 and text for positively-adjusted results

1

Doc. No: 212218-10810

The results in Table 2 show that, under the operational and meteorological conditions at the time, operational noise from MCC was inaudible at monitoring location R32. Operational noise from MCC was audible at all other monitoring locations throughout the survey.

Table 2 also shows that the noise was consistent enough to be measurable at monitoring locations R13, R15, R17, and R25. At locations R13, R15, R17 and R25, the noise from MCC was from a combination of equipment hum with engine revs, horns, and dozer tracks.

The data from the site operated weather station showed that meteorological conditions were compliant with the conditions in the NMP for the noise monitoring surveys conducted at all monitoring locations.

As indicated above, noise from MCC was measurable or quantifiable at locations R13, R15, R17 and R25.

Data from those times where MCC operations were audible during the monitoring survey were analysed using the "Evaluator" software. This analysis showed the noise did not contain any tonal or impulsive components as per definitions in the NPI.

The methodology for analysing the low frequency noise modifying factor correction in the NPI is shown in extract below.

Low-frequency noise	Measurement of source contribution C-weighted and A-weighted level and one-third octave measurements in the range 10– 160 Hz	Measure/assess source contribution C- and A-weighted Leq,T levels over same time period. Correction to be applied where the C minus A level is 15 dB or more and: • where any of the one-third octave noise levels in Table C2 are exceeded by up to and including 5 dB and cannot be mitigated, a 2- dB(A) positive adjustment to measured/predicted A- weighted levels applies for the evening/night period • where any of the one-third octave noise levels in Table C2 are exceeded by more than 5 dB and cannot be mitigated, a 5- dB(A) positive adjustment to measured/predicted A- weighted levels applies for the evening/night period and a 2- dB(A) positive adjustment applies for the daytime period.	2 or 5 dB ²	A difference of 15 dB or more between C- and A-weighted measurements identifies the potential for an unbalance spectrum and potential increased annoyance. The values in Table C2 are derived from Moorhouse (2011) for DEFRA fluctuating low-frequency noise criteria with corrections to reflect external assessment locations.
------------------------	--	---	------------------------	---

Table C2: One-third octave low-frequency noise thresholds.

Hz/dB(Z)	One-th	hird octa	ave dB(Z) Leq (15 min)	thresho	ld level						
Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
dB(Z)	92	89	86	77	69	61	54	50	50	48	48	46	44

Doc. No: 212218-10810

The correction applies to the site noise component only. There are many sources of low frequency noise in the acoustic environment of each receiver area (including noise from road and rail traffic). In many cases the C minus A level is greater than 15 due to these other noise sources. In most instances the screening criteria will be the one third octave analysis. The NPI quantitative assessment of noise from MCC can only be conducted where the noise was clearly definable, which is at a level typically greater than 30 dB(A) or when there are no other significant sources. Due to this, quantitative assessment of low frequency noise was possible for the measurements taken at locations R13, R15, R17 and R25.

Table 3 presents the low-frequency assessment of the operational noise measured at 35 dB(A) at R25 Sandy Creek Rd on the 9th April 2025.

		Table 3.	Low-fr	equenc	y analys	sis – R2	5 Sandy	Creek	Rd 12:2	0 am			
Hz/dB(Z)	One-tl	nird octa	ave LZe	q,15mir	thresh	old leve	el						
Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
R25 Sandy Creek Rd, dB(Z)		41	40	39	43	43	40	38	35	43	40	37	32
Threshold, dB(Z)	92	89	86	77	69	61	54	50	50	48	48	46	44
Exceedance, dB		0	0	0	0	0	0	0	0	0	0	0	0

The results in Table 3 show no exceedance of the low-frequency criteria.

Table 4 presents the low-frequency assessment of the operational noise measured at 37 dB(A) at R13 Sandy Creek Rd on the 9th April 2025.

		Table 4.	Low-fr	equenc	y analys	sis – R1:	3 Sandy	Creek	Rd 12:4	0 am			
Hz/dB(Z)	One-th	nird octa	ave LZe	q,15min	thresh	old leve	el						
Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
R13 Sandy Creek Rd, dB(Z)		40	44	51	41	40	39	36	36	53	51	39	36
Threshold, dB(Z)	92	89	86	77	69	61	54	50	50	48	48	46	44
Exceedance, dB		0	0	0	0	0	0	0	0	5	3	0	0

The results in Table 4 show exceedances of the low-frequency criteria up to and including 5 dB in the one-third octave bands at 80Hz and 100Hz. As such, a 4-dB(A) positive adjustment will be applied to the measured MCC noise levels. The positively adjusted MCC noise levels are therefore 41 dB(A),Leq(15 min) and 44 dB(A),L1(1 min) which do not exceed the applicable noise criteria.

Table 5 presents the low-frequency assessment of the operational noise measured at 35 dB(A) at R15 Queen St on the 9th April 2025.

Doc. No: 212218-10810

		Table	5. Low	-freque	ncy ana	lysis – F	R15 Que	en Stre	et 1:04 a	am			
Hz/dB(Z)	One-tl	nird octa	ave LZe	q,15min	thresh	old leve	el						
Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
R15 Queen St, dB(Z)		39	41	41	43	39	41	40	39	45	45	40	35
Threshold, dB(Z)	92	89	86	77	69	61	54	50	50	48	48	46	44
Exceedance, dB		0	0	0	0	0	0	0	0	0	0	0	0

The results in Table 5 show no exceedance of the low-frequency criteria.

Table 6 presents the low-frequency assessment of the operational noise measured at 35 dB(A) at R17 Queen St on the 9th April 2025.

		Table	6. Low	-freque	ncy ana	lysis – F	R17 Que	en Stre	et 1:23 a	am			
Hz/dB(Z)	One-tl	nird octa	ave LZe	q,15mir	thresh	old leve	el						
Frequency (Hz)	10	12.5	16	20	25	31.5	40	50	63	80	100	125	160
R17 Queen St, dB(Z)		43	47	45	46	38	43	43	40	47	48	41	36
Threshold, dB(Z)	92	89	86	77	69	61	54	50	50	48	48	46	44
Exceedance, dB		0	0	0	0	0	0	0	0	0	0	0	0

The results in Table 6 show no exceedance of the low-frequency criteria.

In addition to the operational noise, the noise from MCC must not exceed **45 or 47 dB(A) L1 (1 min)** between the hours of 10 pm and 7 am (see Appendix I for details of noise criteria at various receiver locations). This is to minimise the potential for sleep disturbance as a result of individual loud noises from the operation.

The compliance measurement locations are different for each of the operational and sleep disturbance noise. That is, the sleep disturbance criterion is typically applicable at 1m from the facade of a bedroom window.

To avoid undue disturbance to residents the L1 (1 min) noise level from the operational measurements are used to show general compliance with the sleep disturbance criterion. That is, as the distance between the noise source and the operational noise monitoring location is significantly greater than the distance between the operational noise monitoring location and the sleep disturbance monitoring location (i.e. 1m from the facade of the house) there will be little variation in L1 (1 min) levels between the two monitoring locations.

It must be noted, however, that the sleep disturbance criterion is applicable at the outside of a bedroom window. As the internal layout of each residence is not known, to consider a worst case, the bedroom windows were assumed to be facing towards the site.

As shown in Table 2, during the night time measurement circuit the L1 (1 min) noise from MCC did not exceed 45 dB(A) at any monitoring location.

We trust this report fulfils your requirements at this time, however, should you require additional information or assistance please contact the undersigned on (02) 4954 2276.

Yours faithfully,

SPECTRUM ACOUSTICS PTY LIMITED

Author:

Neil Pennington

Acoustical Consultant

1

Doc. No: 212218-10810

Appendix I

Noise criteria from Development Consent DA205/2002 (Locations as per Figure 1).

Location	Day	Evening	Nig	ht
Location	L _{Aeq(15 minute)}	L _{Aeq(15 minute)}	L _{Aeq(15 minute)}	L _{A1 (1 minute)}
R1, R2, R3, R4, R17, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R37, R38, R39	35	35	35	45
R5	36	36	36	45
R7	38	38	38	45
R11	39	39	39	45
R12	39	39	39	45
R13	41	41	41	45
R14	38	38	38	45
R15	37	37	37	45
R16	36	36	36	45
R17	35	35	35	45
R18	45	38	37	47
R20	45	38	37	47
R21	37	37	37	45
R22	39	39	39	45
R23	39	39	39	45
R24	40	40	40	45
R25	42	42	42	45
R36	38	38	38	45
R40	42	42	42	45
R41	42	42	42	45
R42	40	40	40	45

Note: All levels are in dB(A)

Note: Following further consultation with the community it has been identified that R11 is a stable complex, not a residence, so the criteria listed in the table above do not apply.

Doc. No: 212218-10810 May 2025

Appendix II

Calibration Certificates

Sydney Calibration Laboratory
Unit 21, 1 Talavera Road, Macquarie Park NSW 2113, Australia
Accredited for compliance with ISO/IEC 17025 - Calibration. Laboratory No. 1301

CERTIFICATE OF CALIBRATION

Certificate No: CAU2401038

Page 1 of 11

CALIBRATION OF:

Sound Level Meter:
Microphone:
Preamplifier:
Supplied Calibrator:

Brüel & Kjær Brüel & Kjær Brüel & Kjær BZ7223 Version 4.7.6 BE1712-22

Brüel & Kjær

2250 4189 ZC-0032 4231 Pattern Approval:

No: 31079 No: 2466354

No: 3030460

No: 3318407

Identification: N/A

CUSTOMER:

Software version:

Instruction manual:

Spectrum Acoustics Pty Ltd

8 Panylan St Cardiff NSW 2285

CALIBRATION CONDITIONS:

Preconditioning:

4 hours at 23 °C

Environment conditions:

see actual values in Environmental conditions sections

SPECIFICATIONS:

The Sound Level Meter has been calibrated in accordance with the requirements as specified in IEC61672-1:2013 class 1. Procedures from IEC 61672-3:2013 were used to perform the periodic tests. The measurements included in this document are traceable to Australian / International standards through accredited calibration of all relevant reference equipment.

PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System B&K 3630 with application software type 7763 (version 8.6 - DB: 8.60) and test procedure 2250-4189.

RESULTS

KESU	LIS. to believe out last startenamels of	
	Initial calibration	Calibration prior to repair/adjustment
х	Calibration without repair/adjustment	Calibration after repair/adjustment

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of Calibration: 04/11/2024

Certificate issued: 06/11/2024

Barath Chandar Rajendran

Calibration Technician

Sajeeb Tharayi

Approved signator

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

Unit 21, 1 Talavera Road, Macquarie Park NSW 2113, Australia Accredited for compliance with ISO/IEC 17025 - Calibration. Laboratory No. 1301

CERTIFICATE OF CALIBRATION

Certificate No: CAU2401037

Page 1 of 5

CALIBRATION OF:

Acoustic Calibrator:

Bruel & Kjaer 4231

No: 2466354

Identification:

N/A

CLIENT:

Spectrum Acoustics Pty Ltd

8 Panylan St

Cardiff NSW 2285

CALIBRATION CONDITIONS:

Preconditioning:

12 hours at 23 °C

Environment conditions

Air temperature: Air pressure:

23.6 °C ±3°C

100.6 kPa ± 3 kPa

Relative Humidity:

53.0 %RH ± 20 %RH

SPECIFICATIONS:

The acoustic calibrator has been calibrated in accordance with the requirements as specified in IEC 60942:2003 class 1. The measurements included in this document are traceable to Australian / International standards through accredited calibration of all relevant reference equipment.

PROCEDURE:

The measurements have been performed with the assistance of Brüel & Kjær Sound Level Meter Calibration System B&K 3630 with application software type 7794 (version 8.6 - DB: 8.60) and test procedure P_4231_4192_M01.

RESULTS:

	Initial calibration	Calibration prior to repair/adjustment
Х	Calibration without repair/adjustment	Calibration after repair/adjustment

The reported expanded uncertainty is based on the standard uncertainty multiplied by a coverage factor k = 2 providing a level of confidence of approximately 95 %. The uncertainty evaluation has been carried out in accordance with EA-4/02 from elements originating from the standards, calibration method, effect of environmental conditions and any short time contribution from the device under calibration.

Date of Calibration: 04/11/2024

Certificate issued: 06/11/2024

Barath Chandar Rajendran

Calibration Technician

Approved signatory

Reproduction of the complete certificate is allowed. Parts of the certificate may only be reproduced after written permission.

Doc. No: 212218-10810

Appendix III

Operational Details - 8 April 2025 (4:45pm to 2:45am)

Excavator and Truck

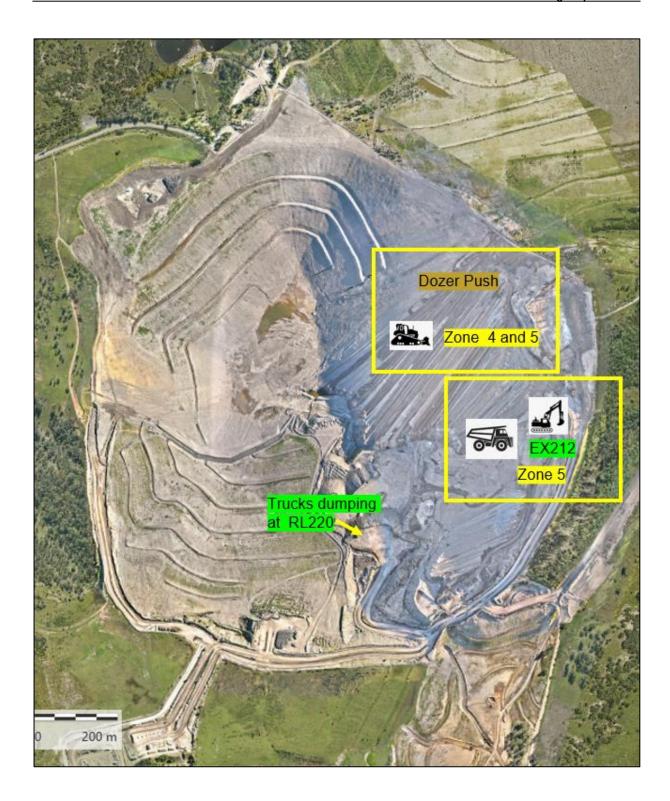
• EX212 was operating in Zone 5 with 4 x 777 trucks running to the RL220 dump area (Zone 5)

Dozer Push

- 1 x DZ on Dump Maintenance RL220
- 3 x DZ's were production dozing in Zone 4
- 4 x DZ's were production dozing in Zone 5

Ancillary Equipment

- 1 x Grader being used for haul road maintenance
- 1 x Loader being used for haul road maintenance in Zone 4
- 1 x Watercart being used for haul road maintenance


Crib Breaks (Engine Off) for 8/04/2025 - Night Shift

**Excavator and trucks were hotseated during crib break, so operated the entire shift.

****\

Doc. No: 212218-10810 May 2025

